aboutsummaryrefslogtreecommitdiff
path: root/makeCrop.py
blob: 70b2fc272ef68e695ae1bae925792f350eb06bac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#!/usr/bin/env python3

import argparse

parser = argparse.ArgumentParser(description='Crop and scale a video based on bounding boxes', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('boxes', help='Path to csv file where bounding boxes are saved')
parser.add_argument('video', help='Path to video to crop')
parser.add_argument('--intermediary', help='Path to intermediary video if size differs')
parser.add_argument('--no-interpolate', help='Do not interpolate over gaps between box updates', action='store_true')
parser.add_argument('--label', help='Boxes label (uses all if not provided)')
parser.add_argument('--save-stem', help='Location to save stem.hdf5 and stem.avi', default='out')
parser.add_argument('--skip-zero-boxes', help='Skip boxes with zero size', action='store_true')
parser.add_argument('--outputWH', help='Output width and height', nargs=2, default=[64,64], type=int)
parser.add_argument('--debug', help='Save a debugging video as well', action='store_true')
parser.add_argument('--extraMetadata', help='Path to json-formatted extra metadata (in addition to embedded in video file)')

args = parser.parse_args()

OUTW, OUTH = args.outputWH

import csv
import json
import subprocess
with open(args.boxes) as f:
    boxes = list(csv.reader(f))

if args.label:
    boxes = [b for b in boxes if b[0] == args.label]

metadata=json.loads(subprocess.check_output(['ffprobe', '-v', 'quiet', '-print_format', 'json', '-show_format', '-show_streams', args.video]))

import cv2
cap = cv2.VideoCapture(args.video)
width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
fps = cap.get(cv2.CAP_PROP_FPS)

zoomX = 1.0
zoomY = 1.0

if args.intermediary:
    metadata=json.loads(subprocess.check_output(['ffprobe', '-v', 'quiet', '-print_format', 'json', '-show_format', '-show_streams', args.intermediary]))
    inter = cv2.VideoCapture(args.intermediary)
    interWidth = inter.get(cv2.CAP_PROP_FRAME_WIDTH)
    interHeight = inter.get(cv2.CAP_PROP_FRAME_HEIGHT)
    zoomX = width / interWidth
    zoomY = height / interHeight
    inter.release()

if args.extraMetadata:
    with open(args.extraMetadata) as f:
        metadata['extra'] = json.load(f)

# Each box is [str(label), float(time), int(x1), int(y1), int(x2), int(y2)]
boxes = [[b[0], float(b[1]), int(int(b[2]) * zoomX), int(int(b[3]) * zoomY), int(int(b[4]) * zoomX), int(int(b[5]) * zoomY)] for b in boxes]

if args.skip_zero_boxes:
    boxes = [b for b in boxes if b[2] != b[4] and b[3] != b[5]]

def alignDims(box: list, whRatio: float = 1.0) -> list:
    '''Make a bounding box dimentions adhere to given ratio

    Arguments:
      box: The bounding box, formatted [x1, y1, x2, y2]
      whRatio: The desired ratio of width to height

    Returns:
      list: The adjusted box
    '''
    coords1, coords2 = [0, 2], [1, 3]
    if (box[coords2[1]] - box[coords2[0]]) * whRatio > (box[coords1[1]] - box[coords1[0]]):
        coords1, coords2 = coords2, coords1
        whRatio = 1 / whRatio
    # coords1 > whRatio * coords2, but we want them equal
    d = int((box[coords1[1]] - box[coords1[0]]) / whRatio - (box[coords2[1]] - box[coords2[0]]))
    box[coords2[0]] -= int(d/2)
    box[coords2[1]] += int(d/2) + (d % 2)
    return box

def shift(box: list, w: int, h: int) -> list:
    '''Shift a bounding box to be within w,h bounds

    Arguments:
      box: The bounding box, formatted [x1, y1, x2, y2]
      w: The width of the frame (i.e., maximum x value)
      h: The height of the frame (i.e., maximum y value)

    Returns:
      list: The shifted box
    '''
    bounds = [[0, int(w)], [0, int(h)]]
    coords = [[0, 2], [1, 3]]
    for b, c in zip(bounds, coords):
        s = 0
        if box[c[0]] < b[0]:
            s = -box[c[0]]
        elif box[c[1]] > b[1]:
            s = b[1] - box[c[1]]
        box[c[0]] += s
        box[c[1]] += s
    return box

boxes = [box[0:2] + shift(alignDims(box[2:], OUTW/OUTH), width, height) for box in boxes]

import numpy as np
import h5py
outArry = []
outVid = cv2.VideoWriter(args.save_stem + '.avi', cv2.VideoWriter_fourcc('M','J','P','G'), fps, (OUTW, OUTH))

if args.debug:
    outDebug = cv2.VideoWriter(args.save_stem + '-debug.avi', cv2.VideoWriter_fourcc('M','J','P','G'), fps, (int(OUTW * height / OUTH + width), int(height)))

# This may take a bit, so do a progress bar
from progress.bar import IncrementalBar
bar = IncrementalBar('Frames Processed', max=cap.get(cv2.CAP_PROP_FRAME_COUNT), suffix='%(index)d/%(max)d - %(eta)d s')

frameNum = 0
while cap.isOpened():
    ret, frame = cap.read()
    if not ret:
        break
    time = frameNum / fps
    # Make boxes[0] the most recent timestamp without going over current time
    while len(boxes) >= 2 and boxes[1][1] <= time:
        boxes = boxes[1:]
    if len(boxes) == 1: # Stop when we run out
        break
    box = boxes[0]
    if not args.no_interpolate:
        weight = (boxes[1][1] - time) / (boxes[1][1] - boxes[0][1])
        box = [boxes[0][0], time] + [int(boxes[0][i] * weight + boxes[1][i] * (1-weight)) for i in range(2, 6)]
    x1, x2 = sorted([box[2], box[4]])
    y1, y2 = sorted([box[3], box[5]])
    cropped = frame[y1:y2, x1:x2]
    if cropped.size < 1:
        resized = np.zeros((OUTH, OUTW, 3), dtype=cropped.dtype)
    else:
        resized = cv2.resize(cropped, (OUTH, OUTW), interpolation=cv2.INTER_CUBIC)
    outArry.append(resized)
    outVid.write(resized)
    if args.debug:
        # Draw box on frame
        cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
        # Resize "resized"
        scaledUp = cv2.resize(resized, (int(OUTW * height / OUTH), int(height)), interpolation=cv2.INTER_AREA)
        concatted = cv2.hconcat([frame, scaledUp])
        outDebug.write(concatted)
    bar.next()
    frameNum += 1

bar.finish()

print(f'Ending at time = {time}')

# Save out array
#np.savez_compressed(args.save_stem + '.npz', np.array(outArry))
with h5py.File(args.save_stem + '.hdf5', 'w') as f:
    f.create_dataset('data', data=np.array(outArry))
    f.attrs['metadata'] = json.dumps(metadata)